Cholesterol is an important lipid molecule in cell membranes and lipoproteins. Cholesterol is also a precursors of steroid hormones, bile acids, and vitamin D. Abnormal levels of cholesterol or its precursors have been observed in various human diseases, such as heart diseases, stroke, type II diabetes, brain diseases and many others. Therefore, accurate quantification of cholesterol is important for individuals who are at increased risk for these diseases. Multiple analytical methods have been developed for analysis of cholesterol, including classical chemical methods, enzymatic assays, gas chromatography (GC), liquid chromatography (LC), and mass spectrometry (MS). Strategy known as ambient ionization mass spectrometry (AIMS), operating at atmospheric pressure, with only minimal sample pretreatments for real time, in situ, and rapid interrogation of the sample has also been employed for quantification of cholesterol. In this review, we summarize the most prevalent methods for cholesterol quantification in biological samples and foods. Nevertheless, we highlight several new technologies, such as AIMS, used as alternative methods to measure cholesterol that are potentially next-generation platforms. Representative examples of molecular imaging of cholesterol in tissue sections are also included in this review article. © 2018

ScienceDirect Link


Creative Commons License

Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License.

Fulltext URL