•  
  •  
 

Abstract

Due to its chemical complexity, proper quality control for a Chinese medical preparation (CMP) has been a great challenge. Choosing the appropriate quality markers (Q-markers) for quality control of CMP is an important work. Best of all, the chosen Q-markers are the main chemical compounds from the herbals as well as the active constituents of this CMP. Only in this way the established quality control system can really achieve the purpose of controlling the quality of CMP and ensuring the safely and effectively use of CMP. To achieve the purpose, network pharmacology combined with the contents of chemical compounds in the CMP has been used in this research. We took an anti-arrhythmic CMP, Shenxian-Shengmai oral liquid (SSOL), as an example. Firstly, UPLC-QTOF-MS/MS method was used to analyze the main components of SSOL. A total of 64 compounds were unambiguously or tentatively identified and 32 of them were further validated by reference compounds. Secondly, the network was constructed based on the identified compounds to predict the effective compounds related to cardiac arrhythmias. Based on the existing database and the operation method of topology, a method of double network analysis (DNAA) was proposed, from which 10 important targets in the pathway of arrhythmia were screened out, and 26 compounds had good antiarrhythmic activity. Based on the prediction results of network pharmacology along with the contents of the compounds in this CMP, ten representative compounds were chosen as the Q-markers for the quality control of SSOL. We find that five of these ten compounds, including danshensu, rosmarinic acid, salvianolic acid A, epimedin A and icariin, have antiarrhythmic activity. Then, the UPLC-DAD method was established as the control method for SSOL. © 2017

Abstract Image

ScienceDirect Link

10.1016/j.jfda.2017.10.003

Creative Commons License

Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License.

Fulltext URL

https://www.sciencedirect.com/science/article/pii/S1021949817301862/pdfft?md5=b19a87bf6e73de5900629221b884caad&pid=1-s2.0-S1021949817301862-main.pdf

Share

COinS