•  
  •  
 

Abstract

Aim of the present study was to assess the hepatoprotective activity of goat milk on antitubercular drug-induced hepatotoxicity in rats. Hepatotoxicity was induced in rats using a combination of isoniazid, rifampicin, and pyrazinamide given orally as a suspension for 30 days. Treatment groups received goat milk along with antitubercular drugs. Liver damage was assessed using biochemical and histological parameters. Administration of goat milk (20 mL/kg) along with antitubercular drugs (Group III) reversed the levels of serum alanine aminotransferase (82 ± 25.1 vs. 128.8 ± 8.9 units/L) and aspartate aminotransferase (174.7 ± 31.5 vs. 296.4 ± 56.4 units/L, p < 0.01) compared with antitubercular drug treatment Group II. There was a significant decrease in serum alanine aminotransferase (41.8 ± 4.1 vs. 128.8 ± 8.9 units/L, p < 0.01) and aspartate aminotransferase (128.8 ± 8.54 vs. 296.4 ± 56.4 units/L, p < 0.001) levels in Group IV (goat milk 40 mL/kg) compared with antitubercular drug treatment Group II. Goat milk (20 mL/kg and 40 mL/kg) was effective in reversing the rise in malondialdehyde level compared with the antitubercular drug suspension groups (58.5 ± 2 vs. 89.88 ± 2.42 μmol/mL of tissue homogenate, p < 0.001 and 69.7 ± 0.78 vs. 89.88 ± 2.42 μmol/mL of tissue homogenate, p < 0.001, respectively). Similarly, both doses of milk significantly prevented a fall in superoxide dismutase level (6.23 ± 0.29 vs. 3.1 ± 0.288 units/mL, p < 0.001 and 7.8 ± 0.392 vs. 3.1 ± 0.288 units/mL, p < 0.001) compared with the group receiving antitubercular drugs alone. Histological examination indicated that goat milk reduced inflammation and necrotic changes in hepatocytes in the treatment groups. The results indicated that goat milk prevented the antitubercular drug-induced hepatotoxicity and is an effective hepatoprotective agent. © 2016

ScienceDirect Link

10.1016/j.jfda.2016.03.012

Creative Commons License

Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License.

Fulltext URL

https://www.sciencedirect.com/science/article/pii/S1021949816300540/pdfft?md5=75b0a55db8b1b4cb8e680ef5adc15432&pid=1-s2.0-S1021949816300540-main.pdf

Share

COinS