Article Title

High-throughput liquid chromatography tandem mass spectrometry method for simultaneous determination of fampridine, paroxetine, and quinidine in rat plasma: Application to in vivo perfusion study


A selective and high-throughput liquid chromatography–mass spectrometry method has been developed and validated for the simultaneous quantification of paroxetine, fampridine, and quinidine in rat plasma using imipramine as an internal standard. Following protein precipitation extraction, the analytes and internal standard were run on XBridge C18 column (150 mm × 4.6 mm, 5 μm) using a gradient mobile phase consisting of 5mM ammonium formate in water (pH 9.0) and acetonitrile in a flow gradience program. The precursor and product ions of the drugs were monitored on a triple quadrupole instrument operated in the positive ionization mode. The method was validated over a concentration range of 0.1–100 ng/mL for all the three analytes, with relative recoveries ranging from 69% to 82%. The intra- and interbatch precision (percent coefficient of variation) across four validation runs were less than 13.4%. The accuracy determined at four quality control (QC) levels (lower limit of quantitation, low QC, medium QC, and high QC) was within ±6.5% of coefficient of variation values. The method proved highly reproducible and sensitive, and was successfully applied in a pharmacokinetic study after single-dose oral administration to rats and also in perfusion study sample analysis. © 2016

Abstract Image

ScienceDirect Link


Creative Commons License

Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License.