
ratios of efficacies between CRC peels and BECCs
were within the acceptance range of 70e143% (Table
S2). Thus, the candidate BECCs could be considered
as BECCs of CRC peels.
To exclude the interference of any undetected

microconstituents in the collected BECCs, we pre-
pared a mixture of reference compounds (MRCs) by
mixing the 6 PMFs reference compounds (com-
pound 1e6 in Fig. 2A-C, Table 1) according to the
content of these compounds in CRC peels for
bioactivity validation. The results indicated that the
MRCs and CRC peels showed the similar protective
effects with no discernible toxicity (Fig. 2E and
Fig. S1C). These results indicate that PMFs are the
primary antihyperlipidemic constituents in CPC
peels, and the antihyperlipidemic effect of candidate
BECCs is comparable to that of CRC peels in vitro.

The bioactive equivalence assessment data were
also consistent with that of candidate BECCs; 90%
confidence interval of efficacies between CRC
peels and MRCs lay within 70e143% (Table S2).
Together, these results demonstrated that the anti-
hyperlipidemic effect of the MRCs was comparable
to that of CRC peels, and the PMFs combination
could be considered as BECCc of CRC peels.

3.3. Chemical family classification-based screening

To validate the antihyperlipidemic effect of PMFs, 6
PMFs including SIN, TET, NOB, TAN, HMF and 5-
hydroxy-6,7,8,30,40-Pentamethoxyflavone, together
with 5 flavanone glycosides (NAN, NAR, HES, NEO
and DID), and 1 alkaloid SYN were selected for
antihyperlipidemic evaluation using PA-stimulated
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Fig. 4. Combination index and dose-dependent inhibition of PA-induced lipid deposition by single active compounds or compound com-
binations. (A) Measurement (left panel) and the dose-effect curves (right panel) of NOB, SIN, TAN, HMF, TET in inhibition of lipid content by
BODIPY (493/503) Staining in HL7702 cells 24 h after treatment with PA alone, and PA together with NOB, SIN, TAN, HMF or TET, respectively,
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lipid content by BODIPY (493/503) Staining in HL7702 cells 24 h after treatment with PA alone, and PA together with combinations of 5 PMFs,
n ¼ 6. (D) Combination index. The combination index was calculated using CompuSyn software. 0 < CI < 0.9 indicated a synergism effect. Error bars
represent mean ± SEM. (NC, normal control; PA, palmitic acid; HMF, 3,5,6,7,8,30,40-heptamethoxyflavone; TAN, tangerine; SIN, sinensetin; NOB,
nobiletin; TET, 5,7,8,40-tetramethoxyflavone).
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HL7702 cells. The results indicated that all the tested
compounds showed no discernible toxicity in HL-
7702 cells except 5-hydroxy-6,7,8,30,40-Pentamethox-
yflavone (Fig. S2 and Fig. S3). As shown in Fig. 3 and
Fig. S4, all the 5 PMFs significantly reduced lipid
droplets in HL7702 hepatocytes in a concentration-
dependent manner, as measured by BODIPY (493/
503) Staining and lipid content by Nile Red fluores-
cence. The 5 flavanone glycosides including NAN,
NAR, HES, NEO and DID, and the alkaloid SYN did
not affect the lipid content (Fig. S5 and Fig. S6). These
results demonstrated that PMFs were primary
responsible for the antihyperlipidemic effects of CRC
peels.

3.4. Characterization of interactive mode among
PMFs

Next, using the PA-stimulated HL7702 cells, we
investigated the doseeeffect relationship of single
PMF and evaluated the interactive mode among
PMFs. The mixed standards of combinations of 5
PMFs (NOB, SIN, TAN, TNT and HMF) were pre-
pared, of which the concentrations were the same as
those in CRC peels. To calculate the CI values, the
lipid inhibition in PA-stimulated HL7702 cells of
NOB, SIN, TAN, TNT, HMF and combinations of 5
PMFs were tested at various concentrations. Both
BODIPY (493/503) Staining and Nile Red fluores-
cence assays indicated that all the PMFs and com-
binations of 5 PMFs decreased the lipid content in a
concentration-dependent manner (Fig. 4A-C, Fig.
S7A-C) and the compound HMF, which had an EC50

of ~22.45 mM, showed the most potent lipid-
lowering activity (Fig. 4B, Fig. S7B). Then, a CI
method was used for assessing the nature of inter-
action (synergistic, additive, or antagonistic effect).
The effect values of the above groups were intro-
duced into CompuSyn software to obtain the CI
values. As showed in Fig. 4D, Fig. S7D and Table 2,
most of the CI values located in the range of 0e0.9,
indicating a synergism effect among NOB, SIN,
TAN, TNT and HMF. Long et al., evaluated the
interactive mode of 6 compounds in combination
responsible for anti-inflammatory activity of
Cardiotonic Pill and found that these 6 compounds

take effect via an additive mode [8]. Of interest, our
results showed that the PMFs in combination exert
effect in a synergistic mode.

3.5. BECCs exerts antihyperlipidemic effects via
inhibition of inflammation, fatty acid and
cholesterol synthesis

We next preliminarily investigate the anti-
hyperlipidemic mechanism of BECCs. Sterol reg-
ulatory element-binding proteins (SREBPs) play
important roles in regulating lipid homeostasis
and are considered as targets for the treatment of
metabolic diseases [18]. Our data indicated that
BECCs treatment significantly reduced expressions
of SREBP target genes, such as cholesterol meta-
bolism genes DHCR24, PSCK9, HMGCR, and
SREBP-2, as well as fatty acid metabolism genes
SREBP-1c, FASN, ACC1, ACLY, and SCD1 (Fig. 5A-
B). However, BECCs did not affect the mRNA
expression of ABCA1, ABCG5 and CYP7A1, which
mediated the efflux and clearance of cholesterol
and fatty acid [19e21], as well as PPARa, CPT1 and
LPL, which mediated the fatty acid oxidation
[22,23] (Fig. 5C-D). Moreover, BECCs significantly
reduced the mRNA expression of tumor necrosis
factor-a (TNF-a) and interleukin-1b (IL-1b)
(Fig. 5E). BECCs treatment also decreased the
protein expression of n-SREBP-1, n-SREBP-2 and
TNF-a, but did not activate pre-SREBP-1 and pre-
SREBP-2 (Fig. 5F). We also found that different
single PMF may not affect the same molecular
mechanism, for example, HMF down-regulated the
expression of SREBP-2, HMGCS1, DHCR24, MVK,
SREBP-1C, FASN, ACC2, FADPS-2 and TNF-a, while
SIN decreased SREBP-1C, HMGCS1, DHCR24, MVK
and TNF-a mRNA levels (Fig. S8). Together, these
results indicate that BECCs ameliorate hyperlip-
idemia by inhibiting the synthesis of cholesterol
and fatty acids, as well as inflammatory.

3.6. BECCs exhibits robust antihyperlipidemic
effects in HFD-fed rats

The antihyperlipidemic activity of BECCs was
further verified in vivo. We firstly prepared the PMFs

Table 2. The interactions among 5 PMFs.

Lipid droplets Neutral lipids

EC50 (mg/mL) 95% confidence
interval

CI EC50 (mg/mL) 95% confidence
interval

CI

Combinations of 5 PMFs 12.69 9.80-16.50 0.62 12.54 9.74-16.23 0.59
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combination by microporous resin chromatography,
and the 5 major PMFs (SIN, TET, NOB, TAN and
HMF) made up the major components of purified
extracts with the purity 74.61% (w/w) (Fig. 6A-B and
Table S3). HFD-fed rats were used as the model to
address whether PMFs displays a protective effect
against hyperlipidemia in vivo. As shown in Fig. 6C,
PMFs treatment lowered lipid accumulation in liver,
reduced the cell size of white adipocyte tissue and
interscapular brown adipose tissues. Moreover, the
serum TC, TG, and LDL-c were dramatically
reduced, whereas the significant increase in HDL-c

was not observed in PMFs-treated rats (Fig. 6D-G).
These results indicate that PMFs combination ex-
hibits robust efficacy against hyperlipidemia in HFD-
fed rats. Recently, HMF was reported to prevent
obesity in high-fat diet-induced rats by regulation of
the expression of lipid metabolism-related and in-
flammatory response related genes [24]. Indeed, a
purified PMF-rich extract from CRC was shown to be
protective against high-fat feeding in a microbiota-
dependent manner, suggesting that the extract may
be a therapeutic prebiotic agent for the treatment of
metabolic disease [25].
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4. Conclusion

In the present study, based on the bioactive
equivalence oriented feedback screening method, a
combination of 5 PMFs (SIN, TET, NOB, TAN and
HMF) was identified as the antihyperlipidemic
equivalent combinatorial components from CRC
peels. The PMFs combination exhibits robust anti-
hyperlipidemic activities both in PA-stimulated
HL7702 cells in vitro and in HFD-fed rats in
vivo. Moreover, the combination exerts anti-
hyperlipidemic effect via a synergistic mode, and
the mechanism is attributed to the inhibition of fatty
acid and cholesterol synthesis, as well as inflam-
mation. The BECCs obtained from this study may
shed light on the selection of appropriate maker
compounds for quality control of citrus products.
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