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ABSTRACT

Baicalein induces the formation of superoxide and hydroxyl radicals via 12-lipoxygenase (12-LOX) in the B16F10 mouse melanoma 
cell line; baicalein also causes a reduction in cellular viability and induces cell apoptosis. In this study, we utilized ROS scavengers to 
evaluate the role of ROS in baicalein-induced cell death and used the 12-LOX downstream product, 12-hydroxyeicosatetraenoic acid 
(12-HETE), to counterbalance the 12-LOX-inhibitory action of baicalein. ROS scavengers had no effect on cell differentiation, but in the 
cellular viability (MTT) assay, ROS scavengers effectively reversed cell viability reduction induced by baicalein. A Western blot analysis 
revealed that the ROS scavengers had no effect on the cell apoptosis protein, active caspase-3. From the aspect of 12-LOX, 12-HETE 
had no effect on cell differentiation, but it effectively reversed the reduction in cellular viability caused by baicalein in B16F10 cells. 
12-HETE also possessed an inhibitory effect on the increase in expression of active caspase-3 caused by baicalein. Combined pretreat-
ment with ROS scavengers and 12-HETE minimized the damage caused by baicalein. The majority of cell death occurring in response 
to baicalein-induced ROS formation in B16F10 mouse melanoma was due to cell necrosis. Cell apoptosis due to 12-LOX suppression by 
baicalein only accounted for a small portion.
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INTRODUCTION

Baicalein (5,6,7-trihydroxyflavone), a bioactive flavo-
noid extracted from the root of Scutellaria baicalensis or 
Scutellaria radix, is frequently used to treat chronic hepa-
titis in China and Japan. It possesses anti-inflammatory(1,2), 
antithrombotic(3) and antioxidant effects(4,5), and produces 
cell cycle arrest and suppression of proliferation in cancer 
cells(6-8).

Baicalein was confirmed to inhibit the activity of 
12-lipoxygenase (12-LOX)(9) and is widely used to decrease 
12-hydroxyeicosatetraenoic acid (12-HETE) generation in 
cell proliferation studies. Breast, colorectal, and prostate 
cancers, were reported to overexpress 12-LOX which was 
suggested to be a regulator of cancer cell growth(10-12). 
12-LOX levels are associated with the grade and stage of 
human prostate tumors(13). The addition of 12-HETE in 
the presence of baicalein inhibited the loss of phosphory-
lated retinoblastoma (pRB) protein in PC3 cells, whereas 
12-HETE alone induced pRB expression(14).

Reactive oxygen species (ROS) can cause membrane 
damage and lead to cell death via apoptosis or necrosis(15). 
Although some natural herbal compounds have been 
reported to destroy tumor cells by the generation of ROS, the 
mechanisms concerning how ROS is induced have not been 
clarified(16).

 Baicalein induces the apoptosis of Jurkat cells(17), HL60 
cells(18), and mouse-rat hybrid retina ganglion cells(19), all of 
which are accompanied by intracellular ROS generation. In 
normal cells, our previous study demonstrated that baicalein 
induces hydroxyl radical formation in human platelets which 
contain a 12-LOX isoform (p12-LOX), but baicalein does not 
induce ROS in rat vascular smooth muscle cells and human 
umbilical vein endothelial cells(20). In B16F10 cells, we also 
detected hydroxyl radicals and superoxide anion radicals 
generated by baicalein via 12-LOX, and found that baicalein 
caused a reduction in cellular viability. In addition, decreases 
in 12-LOX protein expression and free radical generation 
occurred in a 12-LOX small interfering RNA knockdown 
protein group compared with the baicalein control(21). Those 
results suggested that ROS formation catalyzed by 12-LOX 
is one possible mechanism of baicalein-induced cell death, 
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but the precise mechanism, apoptosis or necrosis, is still 
ambiguous.

Baicalein was recently shown to enhance TRAIL-
induced apoptosis by the induction of a CCAAT/enhancer-
binding protein homologous protein (CHOP). In contrast, 
baicalein increases TRAIL-R2 expression through a ROS-
mediated mechanism independent of CHOP in human pros-
tate cancer PC-3 cells(22). However, baicalein barely induces 
apoptosis in normal cells. The mechanism of distinguishing 
tumor from normal cells by Baicalein remains unknown. 
In the present study, we demonstrated that B16F10 mouse 
melanoma cell death caused by baicalein was mainly due to 
ROS generation through 12-LOX, which suggests that the 
majority of cell death was due to cell necrosis. Cell apoptosis 
caused by 12-LOX suppression of baicalein accounted for 
only a small portion.

Materials and Methods

I. Materials

Arachidonic acid (AA), aprotinin, 4-hydroxy-3-
methoxyacetophenone (acetovanillone), catalase (CAT), 
dimethyl sulfoxide (DMSO), dithiothreitol (DTT), 
5,5-dimethyl-1-pyrroline N-oxide (DMPO), N-2-hydroxyeth-
ylpiperazine-N’-2-ethanesulfonic acid (HEPES), mannitol, 
tetrazolium dye 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-
tetrazolium bromide (MTT), phenylmethylsulfonyl fluoride 
(PMSF) and quinacrine were purchased from Sigma Chem-
ical (St. Louis, MO, USA). 1-Hydroxy-3-methoxycarbonyl-
2,2,5,5-tetramethylpyrrolidine HCl (CMH) was purchased 
from Alexis (San Diego, CA, USA). Baicalein was purchased 
from Aldrich Chemical (Milwaukee, WI, USA). Sodium 
dodecylsulfate (SDS), Triton X-100 and Tris-base were 
obtained from Amersham Life Sciences (Arlington Heights, 
IL, USA). Polyoxyethylenesorbitan monolaurate (Tween 20), 
N,N,N,N,-tetramethylethylethylenediamine (TEMED) and 
glycerol were purchased from Pharmacia Biotech (Pisca-
taway, NJ, USA). Amphotericin B (fungizone), Dulbecco’s 
modified Eagle medium (DMEM), porcine elastase, fetal 
calf serum (FCS), L-glutamine, Hank’s balanced salt solu-
tion (HBSS), penicillin/streptomycin, sodium pyruvate, 
trypan blue stain and trypsin-EDTA were purchased from 
Gibco BRL (Grand Island, NY, USA). The 12-lipoxygenase 
primary antibody and cleaved caspase-3 rabbit (ASP175) 
antibody were purchased from Sigma Chemical, Abcam 
(Cambridge, UK) and Cell Signaling Technology (Beverly, 
MA, USA), respectively. Horseradish peroxidase (HRP)-
conjugated sheep anti-mouse and anti-rabbit antibodies were 
obtained from Amersham (Bucks, UK), and mouse and 
rabbit control immunoglobulin G (IgG) was purchased from 
Organon Teknika-Cappel (Malvern, PA, USA).

II. Tumor Cell Lines and Cell Culture

B16F10 murine melanoma cells were obtained from the 

National Institute of Preventive Medicine, Department of 
Health, Executive Yuan (Taipei, Taiwan) and were cultured 
at 37°C under a humid atmosphere and 5% CO2, in DMEM 
medium with 10 mM of HEPES, 24 mM of sodium bicar-
bonate, 40 mg/L of gentamycin (pH 7.2) and 10% FCS.

III. Morphological Study

After the cells had been incubated with baicalein (10, 25 
and 50 μM) for 12 h, the cell morphology was observed and 
images were captured under a light microscope connected to 
a digital camera (Nikon TS100, Japan).

IV. Proliferation Assay

Cell viability was assessed using a standard MTT 
assay. B16F10 cells in the exponential growth phase were 
suspended in DMEM containing 10% FCS and cultured in 
flat-bottomed, 96-well plates (2 × 104 cells/well) for 24 h at 
37°C, followed by the addition of baicalein. The final concen-
trations of the drug were 10, 25 and 50 μM, and plain DMEM 
was used as the negative control. The plates were incubated 
in a humidified incubator of 5% CO2 at 37°C for 6, 12, 18 and 
24 h. The supernatants were discarded after centrifugation. 
MTT (0.5 mg/mL) at 100 μL/well was added to the plates and 
incubation continued for 3 h. The supernatant was then care-
fully removed and 300 μL of DMSO was added to dissolve 
the formazan crystals. The optical density at 540 nm was 
read using an enzyme-linked immunosorbent assay (ELISA) 
reader. The percentage of cell viability was calculated as the 
absorbance of treated cells/control cells × 100%.

V. Flow Cytometric Analysis

B16F10 cells were seeded onto six-well plates at a 
density of 5 × 104 cells per well and incubated for 24 h before 
the experiment. The cells were washed with PBS, treated 
with media containing baicalein in DMSO and incubated 
for 24 h. Supernatants and collected cells were centrifuged, 
and cell pellets were suspended in 1× calcium buffer at a 
rate 105 cells/100 μL. The cells were stained with annexin 
(BD 556420) and propidium iodide (PI; Sigma P4864) in a 
dark room for 15 min. The DNA content was determined 
on a flow cytometer (Becton Dickinson, FACScan Syst., 
San Jose, CA, USA). Percentages of apoptotic, necrotic, 
and decompensated cells were calculated among all viable 
cells (100%). All experiments were repeated three times to  
ensure reproducibility.

VI. Western Blotting

To determine the expression of caspase-3, B16F10 cells 
were cultured on 24-well plates and treated with baicalein 
or an isovolumetric solvent control for 12 h. At the indicated 
times, the cells were washed with ice-cold PBS buffer (pH 
7.3). Proteins were extracted with lysis buffer for 30 min. 
Lysates were centrifuged and the supernatant (60 - 80 μg 
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protein) was subjected to SDS-polyacrylamide gel electro-
phoresis (PAGE) and electrophoretically transferred onto 
polyvinylidene difluoride (PVDF) membranes (0.45 µm; 
Hybond-P; Amersham). Samples were mixed with sample 
buffer, boiled for 10 min, separated by 0.1% SDS, subjected 
to 10% polyacrylamide gel electrophoresis under denaturing 
conditions and electroblotted onto Immobilon-P membranes 
(Millipore). The membranes were blocked with TBS (5% 
non-fat dry milk, 0.1% Tween 20 in 50 mM of Tris-HCl 
buffer and 150 mM of NaCl; pH 7.5) overnight at 4°C. The 
membranes were incubated with an anti-12-lipoxygenase, 
anti-α-tubulin, anti-lamin A/C, anti-caspase-3 or anti-β-actin 
antibody (Sigma) for 3 h at room temperature. After four 
washes in TBS/0.1% Tween 20, the membranes were probed 
with a secondary goat anti-rat (Santa Cruz Technology, Santa 
Cruz, CA, USA) or goat anti-mouse (KPL) antibody, each 
conjugated to HRP. After washing four times with TBS 
and 0.1% Tween 20, the band with peroxidase activity was 
detected using film exposure with enhanced chemilumines-
cence detection reagents (ECL+ system, Amersham). Densi-
tometric analysis of specific bands was performed using 
a Photo-Print Digital Imaging System (IP-008-SD) with 
analytic software (Bio-1Dlight, V 2000).

VII. Statistical Analysis

Experimental results are expressed as the mean ± SEM 
and are accompanied by the number (n) of observations. Data 
were assessed using an analysis of variance (ANOVA). If this 
analysis indicated significant differences among the group 
means, then each group was compared using the Newman-
Keuls method. A p value of less than 0.05 was considered 
statistically significant.

Results

I. Effect of ROS Scavengers on Baicalein-Induced 
Inhibition of Proliferation of B16F10 Melanoma Cells

We compared the effects of the spin-trappers, CMH and 
DMPO, with the extracellular ROS scavengers, mannitol 
and catalase, on baicalein-induced proliferation inhibition 
in B16F10 melanoma cells in this study. We first evaluated 
morphological changes induced by baicalein and the effects 
of ROS scavengers on baicalein-induced morphological 
changes. B16F10 melanoma cells were treated with 50 μM 
of baicalein for 24 h. ROS scavengers were administered 1 h 
before baicalein. As shown in Figure 1, B16F10 cells became 
much more spindly in shape after 24 h, and some of the cells 
seemed to have broken down (Figure 1B). Both pretreatment 
with 25 mM of mannitol (Figure 1C) and 300 unit/mL of cata-
lase (Figure 1D) both increased the number of cells without 
obvious changes to the cell morphology. Similar results were 
observed in groups pretreated with spin-trappers, CMH 
(Figure 1E) and DMPO (Figure 1F). 

II. Effect of Adding 12-HETE Back on Baicalein-Induced 
Inhibition of Proliferation of B16F10 Melanoma Cells

We evaluated the effects of 12-HETE on baicalein-
induced morphological changes. B16F10 melanoma cells 
were treated with 50 μM of baicalein for 24 h. 12-HETE was 
administered 1 h before baicalein. As shown in Figure 1, 
both pretreatments with 500 nM (Figure 1G) and 1000 nM 
of 12-HETE (Figure 1H) showed no obvious changes in the 
cell morphology. 

III. Effects of ROS Scavengers and 12-HETE on Baicalein-
Induced Inhibition of Proliferation of B16F10 Melanoma 
Cells

To elucidate the mechanisms of inhibition of B16F10 cell 
growth by baicalein, we investigated whether ROS scaven-
gers and 12-HETE could reverse the cell shape change effects 
of baicalein. The scavengers and 12-HETE were added 1 h 
before the addition of baicalein (50 μM for 24 h). The shape 
changes obviously decreased (Figure 2) compared to ROS 
scavenger-treated or 12-HETE-treated groups (Figure 1). 

The effects of ROS scavengers on the proliferation of 
B16F10 melanoma cells were determined by a MTT colori-
metric survival assay (Figure 3A). All values were normal-
ized to percentage of the control and represented the average 
of three independent incubations. Proliferation of groups 
of melanoma cells treated with 1 mM of CMH, 10 mM of 
DMPO, 25 mM of mannitol and 300 unit/mL of catalase were 
higher than the baicalein-treated (50 μM for 24 h) group, and 
results were 49.8 ± 7.8%, 72.8 ± 6.8%, 71.3 ± 3.9%, 57.8 ± 
4.8% and 80.1 ± 3.3%, respectively. The effects of 12-HETE 
on the proliferation of B16F10 melanoma cells were shown in 
Figure 3B. Proliferation levels in the 500 nM and 1000 nM 
12-HETE-treated groups of melanoma cells were higher than 
that of the baicalein-treated (50 μM for 24 h) group, but only 
the effect of 1000 nM of 12-HETE was significant, and results 
were 55.1 ± 4.5%, 62.2 ± 3.8% and 75.3 ± 2.8%, respectively. 
The combined effects of ROS scavengers and 12-HETE on 
the proliferation of B16F10 melanoma cells were shown in 
Figure 3C. Proliferation of groups of melanoma cells treated 
with 1000 nM of 12-HETE and 1 mM of CMH, 1000 nM of 
12-HETE and 10 mM of DMPO, 1000 nM of 12-HETE and 
25 mM of mannitol, and 1000 nM of 12-HETE and 300 units/
mL of catalase were significantly higher than the baicalein-
treated  (50 μM for 24 h) group (p < 0.001), and results were 
48.6 ± 3.8%, 91.0 ± 2.6%, 88.9 ± 4.6%, 85.9 ± 2.1% and 92.2 
± 5.7%, respectively. This indicates that 12-HETE and ROS 
generation are involved in baicalein-induced cell death. In 
addition, proliferation of groups of melanoma cells treated 
with test compounds only showed no significant difference 
from the control group (Figure 3D).

IV. Effects of ROS Scavengers on Cleaved Caspase-3 Protein 
Expression Induced by Baicalein in B16F10 Melanoma Cells

Caspase-3 plays an important role as an executioner 
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in the apoptotic process. During apoptosis, the Mr-32,000 
procaspase-3 is cleaved into Mr-17,000 and Mr-11,000 forms 
of active caspase-3(23). Our results showed that baicalein 
induced marked caspase-3 activation in B16F10 melanoma 
cells after 24 h of treatment, while pretreatment with 25 mM 
of mannitol, 300 unit/mL of catalase, 1 mM of CMH and 10 
mM of DMPO showed no significant effect (Figure 4). This 
result indicated that ROS are involved in baicalein-induced 
cell death but not cell apoptosis.

V. Effects of 12-HETE and Scavengers on Cleaved Caspase-3 
Protein Expression Induced by Baicalein in B16F10 
Melanoma Cells

As shown in Figure 5, we observed that baicalein 
induced marked caspase-3 activation in B16F10 melanoma 
cells after 24 h of treatment, and pretreatment with 500 nM 
and 1000 nM of 12-HETE decreased this activation, but 

only the effect of 1000 nM of 12-HETE was significant. 
This reveals that 12-HETE is involved in baicalein-induced 
B16F10 cell apoptosis.

VI. Induction of Apoptosis and Necrosis by Baicalein in 
B16F10 Cells

A flow cytometric assay was used to quantify apop-
totic and necrotic cells treated with 50 μM of baicalein. 
Treated and untreated B16F10 cells were stained with 
annexin V-FITC and PI. Annexin V-FITC staining is used 
in conjunction with the dye PI to distinguish between cells 
that are early in apoptosis from those late in apoptosis. 
Figure 6 shows the cytotoxic response in B16F10 cells 
treated with baicalein. The apoptotic index is the sum of the 
percentage of cells that were positive for annexin-V-FITC 
alone (pre-apoptotic) and cells positive for both annexin-V-
FITC and PI (late-apoptotic) within a population of cells. 

Figure 1. Effects of ROS scavengers and 12-HETE, given separately, on baicalein-induced morphological changes in B16F10 melanoma cells. 
B16F10 cells were treated with 50 μM of baicalein for 24 h. ROS scavengers were administered for 1 h before baicalein. The cells were washed 
with PBS three times before viewing under microscopy. (A) Resting, (B) 50 μM of baicalein, (C) 50 μM of baicalein + 25 mM of mannitol, (D) 
50 μM of baicalein + 300 units/mL of catalase, (E) 50 μM of baicalein + 1 mM of CMH, (F) 50 μM of baicalein + 10 mM of DMPO, (G) 50 μM 
of baicalein + 500 nM of 12-HETE, (H) 50 μM of baicalein + 1000 nM of 12-HETE (magnification: ×100).
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(G)
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Figure 3. Effects of ROS scavengers plus 12-HETE on baicalein-induced inhibition of proliferation of B16F10 melanoma cells. B16F10 mela-
noma cells (5 × 104 cells/mL ) were dispensed on 96-well plates until 80 - 90% confluent. (A) Cells were treated with 1 mM of CMH, 10 mM of 
DMPO, 25 mM of mannitol or 300 units/mL of catalase for 1 h; (B) cells were treated with 500 nM or 1000 nM of 12-HETE for 1 h; (C) cells 
were treated with 1000 nM of 12-HETE and ROS scavengers, and 10 mM of DMPO, 1 mM of CMH, 25 mM of mannitol or 300 units/mL of 
catalase for 1 h, before treatment with 50 μM baicalein for 24 h; (D) cells were treated with the indicated concentration of test compounds only. 
The percentage of viable cells is presented as the mean ± SEM of three independent experiments. ***p < 0.001; **p < 0.01; *p < 0.05, compared 
to baicalein treatment only.

Figure 2. Effects of ROS scavengers plus 12-HETE on baicalein-induced morphological changes in B16F10 melanoma cells. B16F10 cells were 
treated with 50 μM of baicalein for 24 h. ROS scavengers and 12-HETE were added 1 h before treatment with baicalein. The cells were washed 
with PBS three times before examination by microscopy. (A) Resting, (B) 50 μM of baicalein, (C) 50 μM of baicalein + 1000 nM of 12-HETE + 
1 mM of CMH, (D) 50 μM of baicalein + 1000 nM of 12-HETE + 10 mM of DMPO, (E) 50 μM of baicalein + 1000 nM of 12-HETE + 25 mM of 
mannitol, (F) 50 μM of baicalein + 1000 nM of 12-HETE + 300 unit/mL of catalase (magnification: ×100).
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Figure 6. Flow cytometric analysis of apoptosis in B16F10 melanoma cells following treatment with baicalein. (A) Control cells; (B) cells 
treated with 50 µM of baicalein. 
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The necrosis index is the sum of the percentage of cells that 
were positive for PI within a population of cells. Untreated 
cells were primarily annexin V-FITC and PI negative 
(lower left quadrant, panel A), indicating that the cells were 
viable. In comparison with untreated B16F10 cells which 
showed 4.25% background cell death (upper left quadrant 
and upper right quadrant, panel A), cells treated with 50 
μM of baicalein showed 41.24% cell death, including 8.98% 
by apoptosis (upper right quadrant, panel B) and 32.26% by 
necrosis (upper left quadrant, panel B). This indicated that 
the majority of cell death induced by baicalein is through 
cell necrosis.

Discussion

Based on several studies, baicalein can induce apop-
tosis in various cancer cells and the mechanisms of action 
are associated with caspase activation and mitochondrial 
dysfunction(14,24-26). However, there is no available informa-
tion to address the roles of ROS in the induction of cell death 
caused by baicalein. Li et al. suggested that ROS and cellular 
Ca2+ modulate baicalein-induced apoptosis via a Ca2+-
dependent mitochondrial death pathway in mouse-rat hybrid 
retina ganglion cells and demonstrated release of Cyt c from 
mitochondria into the cytosol and activation of caspase-
3(19). In our previous study, we demonstrated that baicalein 
induced the formation of ROS via 12-LOX in the B16F10 
mouse melanoma cell line(21). In the present investigation, 
we utilized extracellular ROS scavengers, mannitol and cata-
lase, and intracellular ROS scavengers, DMPO and CMH, to 
evaluate the role of ROS in baicalein-induced cell death. Our 
data demonstrated that ROS scavengers decreased baicalein-
induced cell death but did not affect the level of activated 
caspase-3, providing further evidence that ROS are not asso-
ciated with baicalein-induced apoptosis in B16F10 cells. One 
interpretation of this observation is that ROS-induced cell 
death may be due to cell necrosis.

AA release from cell membranes is necessary for 
cancer cell proliferation. Moreover, LOX catalyzes AA 
into hydroperoxyeicosatetraenoic acid (HPETE) and finally 
to hydroxyeicosatetraenoic acid (HETE) or to leukotri-
enes. Many cancer cell lines express 12-LOX and produce 
12-HETE(27,28), which can stimulate cancer growth via acti-
vation of the p44/42 mitogen-activated protein kinase and 
PI3/Akt kinase pathways(29). Furthermore, 12-HETE can 
facilitate the invasion and metastasis of cancer cells(30,31). 
The addition of exogenous 12-HETE increased the incor-
poration of thymidine into DNA in a dose-dependent 
manner in A431 human epidermoid carcinoma cells(32,33). 
Prostate(14) and gastric cancer cells(26) were also reported 
to increase proliferation in response to 12-HETE. In this 
study, we found that 12-HETE had no effect on cell growth 
differentiation, but it effectively reversed the reduction in 
cellular viability caused by baicalein in B16F10 cells. This 
result was similar to that with ROS scavengers. In addition, 
12-HETE also possessed an inhibitory effect on the 

increase in expression of active caspase-3 caused by baica-
lein. Finally, we pretreated ROS scavengers and 12-HETE 
at the same time and the results showed that the combined 
treatment minimized the damage caused by baicalein.

Our results conclusively demonstrate that B16F10 
mouse melanoma cell death caused by baicalein is related to 
both 12-LOX suppression and ROS generation, but apoptosis 
only occurs because of 12-LOX suppression by baicalein. 
Moreover, we used cytometric analysis to examine cell death 
caused by baicalein and found that cell necrosis was the major 
mode of cell death and that apoptosis plays only a minimal 
role. Taking together, we concluded that the majority of cell 
death occurring in response to baicalein-induced ROS forma-
tion in B16F10 mouse melanoma cells was due to necrosis. 
Cell apoptosis caused by 12-LOX suppression of baicalein 
only accounted for a small portion. 
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